Implications of eddy cancellation for the nutrient budget of subtropical gyres

Edward Doddridge & David Marshall


The role of mesoscale eddies within the nutrient budget of subtropical gyres remains poorly understood and poorly constrained. We explore a new mechanism by which mesoscale eddies may contribute to these nutrient budgets, namely eddy cancellation. Eddy cancellation describes the rectified effect of mesoscale eddies acting to oppose the Eulerian-mean Ekman pumping. We present an idealized axisymmetric two-layer model of a nutrient in a wind-driven gyre and explore the sensitivity of this model to variations in its parameter values. We find that the residual Ekman pumping velocity has a substantial impact on nutrient concentration, as does mode water thickness. These results suggest the response to both residual Ekman pumping and mode water thickness is non-monotonic: for small values of these parameters the nutrient concentration decreases as the parameter increases. However, beyond a critical value, further increases in Ekman pumping or mode water thickness increase nutrient concentration throughout our highly idealized model. A thin mode water layer promotes vertical diffusion of nutrients from the abyss, while a thicker mode water layer increases productivity by reducing the parametrized particulate flux through the thermocline. The impact of mode water thickness is modulated by the residual Ekman pumping velocity: strong Ekman pumping suppresses the influence of mode water thickness on nutrient concentrations. We use satellite and in-situ measurements to assess the influence of mode water thickness on primary productivity, and find a statistically significant relationship; thicker mode water correlates with higher productivity. This result is consistent with a small residual Ekman pumping velocity.


Idealised model

The source code for the idealised model we describe can be found here.